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Symmetry of Einstein - Yang - Mills systems
and dimensional reduction

A. JADCZYK
InstituteofTheoreticalPhysics,University of Wroclaw

50-205 Wroclaw, Cybulskiego36,Poland

Abstract. The following topicsare discussed:G-invariant Riemannianmetricsand
principal connections,dimensionalreduction of Einstein and Yang-Mills systems,
curvature of cosetspaces,dimensionalreductionof spinors,geometricalinterpreta-
tion of colorand Higgs charges.

1. INTRODUCTION

It is interesting to assumethat space-timepoints are endowedwith some

internal structure. In modern language one assumesthat our 4-dimensional

space-timeM is a base of a fiber bundle (E, ir,M). E is a <<multidimensional

Universe>~~(dimE = 4 + N), and it :E —*M is a projection map identifying points
in E which we do not discriminate.Theideathat theeventswe normally perceive

areonly shadows,or projections,of things which take placein muchmore dimen-

sions can be attributedto Plato. The fact that (undernormal conditions) we are

perfectly blind to the extradimensionsis naturallyexpressedby assumingthat the

fibers of E are homogeneousspaces.In this way certain symmetry group G is

introduced, and it is tempting to connect this group with internal symmetry

groups which are so helpful for classifyingof elementaryparticlesmultiplets. An

exampleof this type of astructureis givenby a gaugetheory whenformulatedin

termsof fiber bundles.Onestartstherewith a principalbundle it P —* M, andthe

fibers of P are groupmanifolds.In electromagnetism(G = U( 1)) theextradimen-
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sion is related to an unobservablephaseof a wavefunction.For non-Abeliangauge

fields one still talks of a non-observable,non-integrable,phase lactor I I. but

it is no longer connected with representingof clualituin mechanicalstates~

rays 1. 1 - dimensional subspaccs)rather than vectors. The attemptsof introduc-

ing quaternionic Hilbert spaces.which are natural for U = St (2). produced

so far no workable model, maybebecauseof the rigidity 01 our thinking. In

this connectionsee [2], [3]. Although principal bundlesproved to be an indispen-

sable conceptin discussinggauge fields and their interaction with matter,many

peoplefelt uneasyaboutan0<1 hoc introduction of sucha very specialgeometrical
structure. One way of a more general, and more natural, introducing of a fib-

ration is by a dynamical mechanismcalled a ~spontaneous compactification

(see e.g. [4], also [3] and referencesthere). Exact geometrical meaningof this

mechanismis not yet clear,and I shall focus hereon a simpler ideawliicls relates

the fibration of E to a global action of sonic internal symmetry group U. A

dynamical origin of U and its action on F is left open here. Keeping in mind

the obvious shortcomingsof our model it is neverthelessworthwhile to study

it as a straightforward generalizationof the principal bundle structure which

proved to be already useful. Before we go into the details let us give first some

relevant references. A unification of gravitation and electromagnetism(I ( I

gaugefield) basedon the idea of a live-dimensional Universe was worked out

by Kaluza [a] and Klein [7]. A possibility of a non-Abehan generalizationof

this idea was discussedseveral times [8. 9. 1 0] andits full geometricalanddyna-

mical content hasbeengiven in [I I . 1 2. 13. 141. In all thesepapersit wasalways

assumedthat F is a principal bundle. i.e. that the internal spacesare group

manifolds. The only exception is the Souriau paper [8]. where the sphere~2

was proposed as a model for an internal space related to the isospin group

U = SU(2). A general framework of U -invariant dimensional reduction dese-

ribecl below hasbeengiven by CoquereauxandJadezyk[I 5[.

For the convenienceof the readerwe include a selection of references(Ref.

[35 -481) where a broaderspectrumof problemsand approachesto gauge fields

and Kaluza-Klein theoriesis discussed.

2. MULTIDIMENSIONAL UNIVERSE AND ITS BUNDLE STRUCTURE

2.1. Assumptionsandnotation

As a mathematicalmodel for a multidimensional Universe we take a manifold

F (the Universe) on which a (global symnietry)group U acts asa groupof tramis—

formations:We assumethat

i) G is a conipact Lie group

ii) U actseffectively on F from the right
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iii) thereis only one stratum(oneorbit type).

We let G;, ={a E G ia =v} to denote the isotropy group at y, and G(y) =

= [ma : a e G} to denote the orbit of G through y. Let M = E/G be the space

of orbits. One can considerM as a quotient of E by the following equivalence

relation: i’ v’ in E if and only if y and y’ are connectedby somesymmetry

transformation from G i.e. i’’ =ya, a E G. The points of M are equivalence

classesof this relation i.e. the orbits of G. There is a canonical projection

it : F —* M which sendseveryy EF into the equivalenceclassto which it belongs,

i.e. into its orbit. By iii) all orbits areof thesametypei.e. all the isotropy groups

G3, areconjugatedto a standardone,say,H.

2.2. Examples

a) Considerthe natural actionof the rotation groupSO(3) on E = JR
3.After

removingthe origin 0 E IR3 we find that all theisotropy groups areconju-

gated to SO(2) — the rotation group about z-axis. The space of orbits

1k! is IR~.
1

b) When we take G = 0(2) acting on F = JR
3 we have to removethe z-axis

to get one stratum. The isotropy groups are then all trivial. The spaceof

orbits is theopenhalf-planeH = x IR.

c) Take E = SU(2) aS3 and G = (1(1) C SU(2). Then all orbits are of the

sametype (all the stability groups are trivial) andM = SU(2)/U(l) ~S2.
ThusE is a fiber bundlewith baseS2andfiber S’.

d) Let F = U(2;H) andG = U(l:H) actingon F by

a b q*aq q*b
U(l,H)~q: c d q*cq , q*d

Here again all the stability groupsare trivial, the spaceof orbits ~ ‘~ is topologi-

cally seven-spherebut carryingone of theexotic differentiablestructuresdisco-

veredby Milnor [16], [17].

2.3. Bundle structure of E

The triple (F. ir,M) defined in 2.1 is a fibration but to makeit into a fiber

bundle one has to distinguish a classof local product representations(trivializa-

tions), andit is not obvious how to decidethis question.We will seethat(F, it, M)

can be consideredas an associatedbundlewith atypical fibre H \ G. The construc-

tion is consideredstandardin the mathematicalliterature (seee.g. [18]) but, so

far, rarely usedby physicists.Onestartswith observationthat theisotropy groups

along the orbit are mutually conjugated:Gia=0’G
3,0 Let v eF be arbitrary.

By the assumption(iii) thereexistsa E G suchthat G~= aHa— But then G3,a=

= H. Thus oii eachorbit x EM the set .P~of all points havingH as the isotropy
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group is non-empty. We have

P~JEE:G=1I}= UP,

and it : F —*31 restricts to a projection it : P —*1(1. What is the structure of the

fibers of P? To answer this question let m, i, EJ~.Since i and i’ are on the

sameorbit thereis ana C G suchthat .i’’ = ia.

But then H = U1, = Gra = a~G1,a = a ‘Ha. The set of all a EU with this

property is known as thenormalizerN(H) of H in G:

N(H) =~aEG :aH=Ha].

and is the biggest subgroupof U in which H is normal. Thus any two points of

a fiber of P are related by an elementof N(H). The normalizerN(H) acts on

the fibers of P transitively, but the action is not effective — the subgroup11
of N(II) acts trivially on P. SinceH is nomial in IV(H), the quotientK iV(IJ) 11

is a group. The action of K on the fibers of P is transitiveandfree. To conclude

from this that (F, it, 1k!, K) is a principal bundle, with structuregroup K. one

has to know that P admits local cross-section.Existenceof suchcross-sections

follows from the so-called <<slice theoremN (see [18] and referencesthere).

2.4. K = N(H)J H as the automorphism group of H \G

A geometrical structure of the homogeneousspaceH \ U is determinedby

the action of G on it. Thus it is natural to define an autoniorpliisni of 1-1 \L

as a mapa : H \ G —~H \ G whichcommuteswith this action

cr(za)=a(:)a, zEII\G, aEG.

The set of all automorphismsis a group under the composition. Let us show

that this group is isomorphic with K. First of all, given ‘1 C A’(H) define cr,, by

ct~([a])~[nal.

If [a] = [a’] then a’ = ha and na’ = li/ia = n1i~i— na = Ii na. Thus [a] = [a’]

implies [na] = [na’] and so the map cr.,, is well defined. We alsohavecs~([a]b)=
= ct([ab]) = [nab] = [na]h = a~(a)b,thereforea,, is an automorphism.Ifn’ = ho

then a,,.([a]) = [~i’a] = [na] = cs0([a]), and, conversely, if a,,. = cs,, then [n’] =

= a~([eJ) = a~(Le])= In]. Thus n —÷ a,, factorizes through H to a I — I map

[n] —* a~.It remains to show that every automorphisma is of this form. Given

a let n C a([e]). It is straightforward to show that ii C N(H) and a = a,, what

completesthe proof.

REMARK. The following remark is important for avoiding misunderstandings.
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Of coursea particular example of a homogeneousspaceH \ G is the group G

itself. It correspondsto H = {e]. But an automorphismof G as a homogeneous

spaceis a different conceptfrom that of an automorphismof G as agroup. The

first would require a(ab) = a(a)b while the seconda(ab) = a(a)cs(b). And it

is clear that H = {e} implies N(H) = G and thus K = G while the group of all

automorphisms of the group C may be different from G (for example

Aut (U(l)) = Z).

2.5. Local product representationsof E

Let a :M —s~Pbe a local cross-sectionof the principal bundleP. Then adeter-

minesalocal trivialization 0 : M xK -+P ofF by 0(x, [a]) a(x) a, [a] EN(H) H.
But ~ can be naturally extendedto a map ~ :M x (H\G)—*E, andit is easyto

seethat ~ so extendedis a local diffeomorphism.

REMARKS.
a) we use the word <<local>> to indicate thatM is to be understoodas an open

U CM, F as iU
t(U) etc.

b) H \ G denotesthe spaceof right cosets[a] = Ha on which G actsfrom the

rig/it. We write N(H) H with a vertical bar to indicate that, since H is

normalin N(H), left andright cosetsof H in N(H) coincide.

c) E may be thought of as a bundleassociatedto P via the left action of K
on H \ G : [/1] : [a] -+ [na]. [ii] C N(H) H. It is well known that a local

cross-sectionof a principal bundle determineslocal product representa-

tion of every associatedbundle. The map ~ above is a particularexample
of sucha representation.

d) In good texts on fiber bundles (see e.g. [19, Ch. 16.14.7.2]) there is a

warning that the structuregroup doesnot act on associatedbundles. One

may wonder how to reconcilethis with the remark c) and action of G on

F. The crucial point here is that the left action of thestructuregroupK
andthe right actionof thegroupC on H \ G commute.

3. RIEMANNIAN GEOMETRY OF H \G

3.1. Lie algebra decomposition

G is a compact Lie group andH is a closedsubgroupof C. The Lie algebras

of G andH are 0 andH respectively.For technicalreasonswe assumeH connect-

ed. Then Ad (11) invarianceis the sameas ad(H)-invariance. If one nieetsa case

of 11 consistingof severalcomponents,then one can replaceH \ G by its cover-

ing to reduce 11 to the connectedcomponentof the identity. Recall that .\‘(H)

is the normalizerof ii in G and let N be the Lie algebraof N(H). Considernow
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the following decompositions

— LetG =N+ L. withAd(N) L CL,

Let N = H + K. with Ad (ii) K C K.

define S K + L.

Then

[H. K] = 0.

1K. K]C K.

Ad (IflS C S.

5 can be identified with the spacetangent to II \ U at tIme origin, and K can be

identified with the Lie algebra of K = .\)1l) 11. Moreover. we also have (for

a proofsee [IS])

(3.1.1) K =-~C5 :Ad(/m)~=~.ImFI1~.

The last property is very important. It tells us that K amid L. are orthogonal to

eachother with respectto aiim Ad (Jfl invariant scalar product on 5

3.2. The canonical moving frame

To each element v C K there correspondsa vector field / on ii K U - the

fundamentalvector field generatedby c. It is definedby

<I
I = (me1)

<11

It follows from this definition that

(3.2.1) /a=Z Ad(a

(we write Z a for (Ra)*Z) what implies

IZ,/,.] ~

Let (C

1 I be a basis for the Lie algebra K. The basis is assumedto be adapted

to the decomposition K = H + K -~ L . with <, U. <). e C H. C 5. Ilie

fundamentalvector fields on 11 3 U correspondingto H are denotedby ~, . I hems

Ic0 <~1= ~

where (.~.are the structureconstantsof U At time origin ‘ = ]c thevector fields

<‘ correspondingto the isotropy group II all vanish and c 1 0) Iorm a basis in
11 \ U). Thus <‘ are linearly independent also in some opemi neighborhood

of the origin. We call (c ) the caimo,mic-a/ //2<) log fHisimc for II K U. It should be
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observed,however, that e,~may ceaseto vanish for v arbitrarily close to the

origin (exceptfor specialdirectionsgeneratedby theactionof .TV(H)).

3.3. Invariant metrics

If g = (g~) is a (7-invariantnietric on (H \ G) thenits restriction to T
0(H3 C) =

= S is Ad (H)-invariant. Conversely,every Ad (H)-invariant scalar product on

S determines a C-invariant metric on H \ C, this owing to the transitivity of

C-action. Now S decomposesinto K + L with [H, K] = 0,andK IL. Therefore

to give II \ C a C-invariant metric is to endow K and L with scalarproducts,the

scalarproduct in L beingAd (H)-invariant and that in K arbitrary.

REMARK. We know from (2.4) that on (H\C) actsnot only C from the right

but also A

1(H) from the left. Thereis, therefore,a subclassof C-invariantmetrics

on (H \ C) consistingof metrics which are alsoN(H)-invariant. It is easyto see

that these metrics are describedby scalarproducton S which are also Ad (K)-

-invariant. The K-part of such a scalarproduct determinesa biinvariantmetric

on the groupK. A particular exampleis givenby the restriction to S of abiinva-

riant metricof C.

3.4. Curvature and Killing vectors

The fundamentalvectorfields Z~,v C 0 areKilling vector fields for aninvariant

metric g. Thus H \ C admits a moving frame of Killing vectors. We considerfirst

a more generalcaseof a metricg on spaceF admitting Killing vectors. IfX, Y are

vector fields, we denoteby (X, Y) their scalarproductgiven by themetric. Recall

thatX is aKilling vector if for all Y. Z

(3.4.1) X(Y, Z) = ([X, Y]. Z) + (Y, [X. Z]),

where X(Y, Z) denotesthederivativeof the function (Y, Z) in the directionof X.

Let V bethe Levi-Civita connectionof ( , ) i.e.

(3.4.2) x(Y,Z) = (V~Y, Z) + (Y. VIZ) (metricity)

and

(3.4.3) V~YV~X[X, Y]=0 (zero torsion)

Decompose7A’ Y into its symmetricandantisymmetricparts

(3.4.4) V~Y = S(X, Y) + A(X. Y).

with S(X. Y) = S(Y,X) andA(X, Y) = —A(Y,X).

LEMMA 3.4.1. For any vectorfieldsX. Y we have
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(3.4.5) A (X. F) = — [X. 1].

If A’. F, Z areKilling vectorsthen

(3.4.6) (S(X, Y).Z) = — —[([Z, X], }‘~ + (X, [Z, )‘])~.

Proof The first statenient follows froni (3.4.3). To deducethe secondobserve

that for any vector fieldsX, F, Z onehas

(V~}’,Z)_iX(Y,Z)+ Y(Z,X)—Z(X. Y) +

(3,4,7) 1
+ [(IX. F], Z) — ([Y, Z], X) + ([Z. X], Y)}.

The result follows then using (3.4.1)forX, Y andZ.

The curvaturetensoris definedby

R(X, Y)Z = V~.V~Z— V~TV~k.Z— V1,~.y1Z.

PROPOSITION 3 .4.2. If X, Y, Z, W areKilling vectors,then

(R(X,Y)Z,W) =— —~([X, Y],Z], W)—([X, Y], W]Z)} +

— — {([Z, W],X], Y)—([Z, W], Y], X)} +

(3.4.8)

+ — [([X,Z], [Y, W]) + 2([X, Y], [Z, W])-([Y,Z], [X, W])} +

4

+ (S(X, Z),S(Y,W))—(S(Y,Z),S(X,WY).

Proof By (3.4.2) we have ~VA.VYZ, W) = X(V~Z,W) — (V~Z,~ W), and

similarly for (VYVXZ, W). The formula follows then from (3.4.4) (3.4.5) and

(3.4.7).

3.5. Curvature ofH\G

We apply now Proposition3.4.2 to derive a formula for thecurvatureof 11 \ U



SYMMETRY OF EINSTEIN-YANG~MILLSSYSTEMSAND DiMENSIONAL REDUCTION 105

endowedwith an invariantmetric g. Forcalculationwe usethe canonicalmoving

frameer,. With X —* Y —* e~,Z -~ e, (3.4.6) gives

(3.5.1) S~<= — 1I2{C~~+C5~},

where C~ g6 C~.(Observe that the structure constantsCç~~ are not, in

general, antisymmetric with respect to the last two indices. This becauseg is

not assumedto be biinvariant. However Cc,~..<= — ~ owing to Ad (H)-inva-
riance of g,,,,~).From (3.4.5) and(3.5.1) we find the Christoffel symbolsF~ =

= (Vae~,e):

(3.5.2) ~ = 1/2(C~ ~Cy,1~+ ~

Takingalso W —* e andR~5= (R(e,e~)e,e5) we get

~

(3.5.3)

+ —g 5{(~ ~+ ~~,1)(c~5+ — ~ + ~~)(c~ +

For the Ricci tensorR~= g”

t’ ~ one thengets

1 1 1
R =—C C -—C C -—C C +

~7 4 ~ ~“~‘< 2 ~‘‘< 7~,k 2 Ii~~<

1 1
(3.5.4) ——C5~ ——C~C~+

2 ‘~ 2 ‘~ ~

——(C +C )C~
2 ~ ~

where we use the convention that the summationover repeatedindiceson the
samelevel is performedwith g’°~.Thus, for example

C C =gO~gkk’g .g ,C~C7, , etc.~ o,.,-~ ~3~3‘y’y ~

Forthe scaharcurvatureR = gi~<R~
5we obtain

(3.5.5) R ~
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3.6. Comments

a) The last terms of the formulae (3.5.4) amid (3 N ) are included tom lime

sake of completenessonly. For a conipact group, and more generahl>

for a unimodulargroup, we have (seee.g. [20. (‘Im. I 0. hO Prob. 14] = 0.

and therefore (since C’~ = 0 by reductivemiessof K -= (I + S ) the last

terms in (3.5.4) and (3.5.51 vanish. In the following these terms will be

omitted.

b) 11KG is called naturally reductive homogenousspace if U, are antisym-

metric alsoin the last two indices.ThenV~F = 1/2[.1. 1] and

R — (~E~C~+ k4 C ~° 2 C

R = —C~(‘~ + gCk4 <~. C 2

where = — C’,~’C~ is the Killing nietric (nonnegative,minus the Killing
form!)

c) In particularif H \ U is a symmetricspace(i.e.: (‘a. = 0). then

R. =—k.
~ 2 ~>

R =
-~

d) H KG is called a normal space if is a restriction to S K e H of a

biinvariant metric g11 on C. Clearly d) implies h). (‘onversely. if U is con-

nected then b) implies d) but g11 may be, in general. sernidefinite. The

subparticularcasesare

d,) H = [e~ (the groupcase)and = k~,,.Then

R, =—k.
5) 4 5_)

R = —dim U
4

d7) 11 K U is a symmetrichomogeneotisspaceandg, = k,. Then
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R. =—kC 2 IC

R = —dimH\C.
2

e) The Ricci tensor R~ consideredas a symmetric bilinear form on S is

also Ad (11)-invariant, if H \ G is isotropy irreducible i.e. if Ad (H) acts

irreducibly on 5, then, by the Shur’s Lemma,R~=gc~7R~must be a
multiple of and thereforeR~= Xg~.Thus H \ C is an Finstein space.

f) We consideredthe spaceof right cosetsH \ C. For a left cosetspaceC / H

the fundamentalvector fields satisfy [Z , Z ] = — Z with the effectv Iu,wh
that everywherein our formulas is to be replacedby - Ct.. Such achange

hasno effect on the curvatureformulaewhichare all quadraticin structure

constants.
g) The formulae (3.5.3). (3.5.4) and (3.5.5) hold at the origin 0 EH\G

and, more generally, at any other point p CH \ C for which the isotropy

group C is H. To go to an arbitrary point [a] onehasto transformthe

indicesby theadjoint representationAd (a).

4. G-INVARIANT DIMENSIONAL REDUCTION OF METRIC

4.1. Reduction theorem

F is not a homogeneousspace,it is a collection of honiogeneousspacesF~

parametrizedby points x C .41. In this sectionwe describeall metricson F which
are G-invariant. The simplest descriptionis geometrical- without any formula!

REDUCTION THEOREM [15]. Every G-invariant metric on F determines,and

is determinedby. a triple consistingof
i) for each x C il/, a U-invariant metric in F~- the copy of J-I\G over .v

ii) principal connectionin the principal bundle(F, it, 31)

iii) metricon .‘vI.

Let us discussbriefly the threeingredients.
Ad i) Clearly U-invariant metric on F restricts to each fiber F, anddetermines

a U-invariant metric on 11 \ U.

Ad ii) For eachs’ CE let I’ he time suhspaceof the tangentspace7~,Econsisting

of vectorstangent to the orbits. Define H,, to be the orthogonal comple-

ment of I’ . Then 11 , restricted to r = p C P. is a K-invariant horizontal

distribution. To concludethat ~ determinesa principal connection
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in P one has to showthat H~is tangentto P. This follows by usingortho-

gonahity of K and L (seeend of Section3.1).

Ad iii) Given pair of vectors~. p C 7~.Mwe can lift them to EU). l~)i’)C 1l~for
any m’ CE~.Then, becauseof U-invarianceof the metric, we find that

(~(i), ~ (i’)) is independentof m’ and thus determinesa scalarproduct

at .v. One can expressthis fact by sayingthat it : F ‘-+ if is a Riemannian

submersion.

4.2. The adapted moving frame

Eachtangentspace7.F decomposesinto

7~,E=J~H,,

where t-~,= {Z,,(,i’) : v C G}, called the vertical spaceat m’, is thespacetangentto the

orbit of C through j’, and H~(called horizontal) is defined as the orthogonal

complementof ~, in 7,F. The vectorsin fr~,andH,, are called vertical and hori-

zontal respectively.We fix a local coordinatesystem.v’~in 31 and denoteby c

the horizontal lifts of vector fields ~. The fundamentalvector fieldscorrespond-
ing to the basic vectors e, C K aredenoted,as in Section 3. by e<. Then (<‘4 ) =

= (e. e~)is a moving frame in a neighbourhoodof a point p0 CF. The three

ingredientsof a C-invariant metric g = (g~~)= [g(c4. UB)] can he constructed

now as follows

(4.2.1) g(x) = g(e5(i), e(v)), it(v) = x. -v C .41

(4.2.2) g~(p)= g(e~p),e0(p)), ~ C 1’,

(4.2.3) w°(v~)= va, u~= vae~(p)+ v~e~)C TP,

where e~= (es.Ca) correspondsto the decomposition.1 = .)~ +~‘, and <ca is

theconnectionform determinedby thehorizontal distribution

Let us now write down the commutationrelationsfor CA~We have

(4.2.4) [ea. e~]=f~e = ~ /~(p)= (‘~, for p C P

(4.2.5) [cC] = 0

(4.2.5 [e5. ci =

Uomments
a) The first relation is evident. Since c are linearly independentwe must

have [e . e ,] = f
5,e for sonic structure fiuictioii.s 1> . On time other handQ 5. .~‘5) . IC

~‘ ] = C” <‘. since e are fundamental.On P we have c 0 amid t Imeme-
S p IC’

fore 1>1 areconstanton P.
IC
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b) The fields e~are invariant by construction,therefore(4.2.5)holds.

c) Because[~, ~I = 0 it follows that [e,,, e,,] is purely vertical. Thus (4.2.6)
defines~ However,atp EP, thevectorseM, e~aretangent to P. It follows

that also [er,, e,,] (p) is tangent to P. ThereforeI~(~)= 0, and is the

curvature2 - form of w.

d) For ii eN we havepnCF forp EP, and

(4.2.7) ea(pn)= A (n’)~’e~(p),

(4.2.8) g~(pn)= A (n ‘)~‘A(n - t)~’g,,(p)

whereA (n)~is the matrix of the adjoint representation

Ad (n)e
5= A(n)ae,.

The scalar fields g,,,~satisfy the constraint of Ad (1/)-invariance,infinitesimaly

g~,,<(p) ~ + g07C~= 0,

which owing to the assumedconnectednessof H, is also sufficient for Ad (11)

invariance.According to (4.2.8) g~dependson p EP in a covariant way. Thus
it can be interpretedas a sectionof an associatedbundle.

4.3. The Levi -Civita connection

The structurefunctions of the moving frame eA are given by (4.2.4)-(4.2.6).

From C-invariance we also have, at p EP,

(4.3.1) eM(e,,,eP)=D~gØ~,

(4.3.2) e~(e0,e7) = ~ +

We use now the formula (3.4.8) to expressthe Christoffel symbols
1’ABC=

= (VA eB,e~)in termsofM-basedquantities:

(4.3.3) Fa~= — ~ ~ + ~

(4.3.4) IT~~=~‘ap0 — 1~’uLip = —D~g~

(4.3.5) F =—F =—F =——F
pa,:’ api’ .~ p:’,a

= [the Christoffel symbolsof g onM}.
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Conmiiie~mts

a) Dg
5~denotesthe covariant derivativeofg~with respectto tIme connection

w. With respectto a local crosssectionu : .11 P it canbe explicitly written

as

Dg, = ag0 + C~A°g,+ C~Aag5,

where Aa= u’
m’w° is the Yang-Mills potential. Strictly speaking (4.3.1).

(4.3.4) and (4.3.5) hold on P only. On theother hand(4.3.1)canbe consi-

deredas a definition of D~ga,~outsideofF. This is similar to the interpreta-
tion we havegiven to (4.2.6).

b) The structure functions are, according to (4.2.4) constanton P. Thus

(4.3.3) is nothing but (3.5.2).

4.4. Ricci andscalarcurvature

We give below the formulaefor Ricci andscalarcurvatureofF. In the adapted

moving frame(eA) definedin 4.2 we obtain

(4.4.1) RIC = RSC(H\ C) + —F,,,
5F~,,,~+—g<<D~g55D~g5<

1 1
— __DMg50g5<D~g~/—

(4.4.2) Rn,,= R~,(M)— — ~ — ~ —

—~V(g’~
0Dg )p I’

1 1
(4.4.3) R~

5= — + —~, gCD’g —

(4.4.4) R = ROil) + R(H\ U) — ~ —

— _g5cg~<(D~g D~g,< + F g5~DMg I —

Cwimnmen U

a) R~(113 U) and R (113 G) are given (3.5.4) and (3.5.5) with understanding
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thatg5~is a function of x.

b) The derivative V~in (4.4.1) and (4.4.2) actsboth on internal and space-

-time indices with A~and F,~respectively.The derivativeV~in (4.4.4)

is the space-timecovariant derivative. It can also be understoodas V~.

c) Let us give an exampleof calculationsusedin derivationof (4.4.4):

1 1 1
g~

0R
5~= ... — —g~

0V~(D~g
5~)= ... — _. v (gICf.F’g ) +

= ... ——V~(g~
0D~g

5~)~

d) The summationover repeatedindiceson the samelevel is performedwith

g5~and gP, For example,at p EP the term FpvaFpva, should be read as
gPP ‘g “g~F~F~.

e) The fourth term in (4.4.4), with the derivativesDg5~,is printed in [15]

with the wrong factor -~- instead of —~-. The preprint (CERN) versionof

[15] givesthecorrectfactor.

f) There are several possibilities of using (4.4.1) - (4.4.4) for determining

field equations.

i) According to the extrenieKaluza-Klein philosophy the field equations

are R,4B= 0 (assuming no matter sourcesin F). This meansRn,,=
= R50= R5 = 0. It is possible that the extreme philosophy should

be usedsimultaneouslywith the completeharmonicanalysisof excita-

tions from time ground stateandneednot becompatiblewith anad hoc

restriction to C-invariantmodes.

ii) One can also try to get a dynamicsof C-invariant modesfrom the ac-

tion principle on 31. The natural candidatefor the action is (seee.g.

[14])

S~ R(g,)(g5~)
2d.v

~Ai

The last term of (4.4.4) givesthen

— ~ +

+ ~ =— ~ +

I
+ ~



112 A.JADCZYK

The term ~(. . .) doesnot contribute to field equations.For calcula-

tion of det (g5~)H
2 any fixed basis(e) is S can be used.It is, however,

convenientto use (Ca) which is orthonormalfor a normalmetric~’nor-

malized to give a unit volumeof H\ C. With this choicedet (g
5~(x))u/

2

is the volume of F~,and integrationover the fiber is already perform-

ed.

iii) Another possibility is to takeS ‘~ ,(‘MR (g~)’12dv. (e.g. [21]). \Vith this
choice the last term of (4.4.4) is already a divergence.However,such

a choiceis consideredas too arbitrary and too eclectic: either we take

extra dimensionsseriously, or if not, theii why to bring them in at

all?

vi) Finally, onecanmakea conformaltransformation

~ [det (g~)]rg~,,

where r is chosenin such a way that ii) —~ iii) + (terms with

(e.g.[22]).

5. SYMMETRIES OF GAUGE FIELDS

5.1. Example

It is instructive to apply the methods developedabove to a particular case

consideredby Clio. Cho [23] considersRienianniannietrics on a principal bundle

which are invariantnot only with respectto the structuregroup actingfrom the

right, but also with respectto an extrasymmetrygroup(Cho calls it ~<magnetic~)

actingon thebundlespacefrom the left. Let (F. it, .41. R) he the principalbundle.

R its structure group, and let S he a group of ui/icr automorphisnis(or gauge

transformations) of E. Every s C S mapsE, into E, amid commuteswith R

(sm)a = sKm’a), a CR. The full symmetry group is now U = S x R. It is this group

which acts on F now, amid to apply the machinery we were devclopiiig we have

to know the isotropy groupH. Fix i E E and let ~ : S R he thegroup homo-

morphisni definedby

Sm = s X (s). s C S.

Then the isotropygroupU,, = H of s is

(5.1.1) 11 = [(s. X(s)) .s CS}.

REMARK. 11 is the isotropy group for thic’ rig/it action of U. where tue right

action of S is definedby m’s ~s i_s..

Supposethatall orbitsareof thesametype. Tlmemi we kmiow thatP CL : U,, = II
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is a principal bundlewith structuregroupN(H) H. Let usfind N(H) andN(H) H.

We have(u, p) eN(H) iff (a, p) (s, A(s)) (tIC
1,pIC) = (s’, A(s’)). Thus s’ = usuIC

and pA(s)p’ = A(s) = A(o)A(s)A(o). It follows that c~A(cICt)p GA(S)’ - the

centralizer (commutant) of A(S) in R. Therefore N(H) = {(s, A(s)c.) :s

cc A(S)’], and N(H) H = A(S)’. The effective gauge group is the centralizer
of the A-imageof S in R.

5.2. Group action on a principal bundle.

We now generalizethe previousexampleto includealso automorphismswhich

are not inner. Let (U, it, F, R) be a principal bundle with structuregroup R,

and let S be a (compact Lie) group of autoniorphismsof U. Now S acts both
on U and F : s : U~-+ ~ andcommuteswith theprincipal actionof R:

(5.2.1) (ys)r = (s~j’)r=s~(vr)= (yr)s.

Of course S may contain a nontrivial subgroupS°of inner automorphismsas
discussedabove. In such a case the action of S on F is noteffective.The full
symmetry groupactingon U is now C = S x R. Let us find out how the isotropy

groupsof the C-action look like. Fix u e U, and let H = G~be the isotropygroup

of u. It is clear that (s,r) EN implies that s is in the isotropy group, call it I, of
ir(u) = j’. Now, ifs El thensu is in the samefiber as u. It follows thatsu = uA(s),

for someA(s) ER. The map A : 1 -+ R is a grouphomomorphism.And su = u A(s)
canbe also readas

(5.2.2) H = {(s, A(s)) :s EI}

H, the isotropy group of u c U, is a subgroupof C x R isomorphic to I - the
isotropygroupof j’ = sr(u). But it is imbeddedin G x R on a diagonal. We shall

assume that G x R acts on U with only oneorbit type, that is that the isotropy
groupof any u e U is conjugatedto H. (It implies that the isotropy groupof

anyj’ CF is conjugatedto I. but the inverseneednot betrue).

Considernow the manifold M = U/C of orbits of C = S x R in U. Since U is
locally E x R it follows that U/S x R is thesameasF/S:

(5.2.3) M=U/C=F/S.

We can introducenow two principalbundles

Q=]uELT:C~=H},

(5.2.4)
P={i’EE:5

5,=J}.

with structuregroupsN(H) H and K N(I) I respectively.Now, if u E Q and

s ci, then su = uA(s)~“ir(su) = it(u)=~’sit(u)= ir(u) ~.ir(u) EP. It follows that
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it : U —~E restrictsto a map it : Q --sP. We havethereforethediagram

C’ -s F
N~ /

~ Ill t
/ N

Q P.

However the map it : Q —sP need not he onto P if K is not connected.Let us

see what is the local structureof the groupN(iI) H. First of all we find, with

.s ci,

(a, p) cN(H) (a, p)(s, X(sfl(a, p)~
1= (s’, A(s’)) ~(asa~ =s’, pA(s)p ~= A(s))

that is

a cIV(i)

a. p) C N(H)

pA(s)p~=A(asa~) sEl.

We know from Section 3.1 that N(l) is locally a productAT(J)~i x K. Indeed.

the Lie algebraat .TV(i) is thedirect sum of the two commutingsuhalgebras.Now.

if a = ik with i El andk C K, then,with s Cl.

A(asa I) = A(iksk t~ I) = AU,si 1) = A(i)As)A(i)

aiuh thereforeA(i) - tp c Z Aft)’, and

p=A(i):, zCZ.

Thus, locally, we have

.\‘(H)t~’{(ik, A(i)z)}.

and therefore

N(H)~1i1V3KxZ.

On a global level it is easyto see that Z is an invariant subgroup of .‘s(Ii) 11

and (N(ii) H) Z is naturally imbedded into K, hut, in general, the natural

map of N II x Z into K (defined by a factorization of pr
1 : (s, r) -s sI need

not give all theconnectedcomponentsof K.

REMARKS

a) Z is an invariant subgroupof NW) 1/, the structuregroup of Q. hut Q

need not admit a reduction to Z. In fact. simice Q/t C P. if Q can be reduced

to Z, then P is trivial.
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b) The first papersdealing with the problem of symmetricgaugefields [25,

26, 27] concentratedon the centralizerZ and overlookedthe normalizer, i.e.

N(I) 1 factor.

c) In [26] theauthorshadto solvethe problemof finding a local cross-section

a of U with fixed homomorphism A. In our, geometrical,languagea is a cross-
-section of the principal bundle Q, and its existenceis guarantedby the <<slice

theorem>>mentionedin Section2.3 (1).

5.3. Inner symmetries

(U, it, F, R) is a principal bundle andlet w be aprincipal connection.If s : U -*

—s U is an automorphismof U then s~ is again a connectionform. It is natural

to call s a symmetry of w if s ~ differs from w only by a gaugetransformation

i.e. by an innerautomorphismr~

(5.3.1)

Now if s ands’ aresymmetries,then

(ss’)*w =

and (ss’)*w = s’*(s*w) = s’*(r*w) = s’*r,~s’ t~’.l.* w

It follows that rç~. may differ froni r~,s’
1r~‘s’ by an inner automorphism

which leavesw invariant. It is important to know this group. We call it J(w).

PROPOSITION5.3. SupposeF connected.Then J(w) is isomorphic to the centra-

lizer of theholonomygroup of w.

Proof For u,v E U define u -~v iff u and mi canbejoinedby ahorizontal(piece-

wise differentiable) path in U. If c~is an inner automorphismof U which leaves

w invariant then u —‘ tm iff mz(u) ‘-.- a(u). Let 4(u) be the holonomy groupat U:

4(u)={aER :u—’ua}.

Fix U E U, and let A,, : J(w) -~ R be definedby

~(u) = uA,,ft~), ct EJ(w).

It is straightforwardto check that A,, is 1 — 1 and that it mapsJ(w) onto the
centralizer of 4(u) in R. For example,let us seethat A,, is onto. Let b C ~(u)’.

To define a’ takeany u C U and let -y be a horizontal path connectingv with the
fiber through a i.e. with ua. for some a cR. Then define a’(u) vatba. It is

(‘) I amindebtedto Dr. J. Tafel for pointilig this questionout.
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straightforward to see that a doesnot dependon the choice of’y. that aCJ(w).

andthat 1> = A,,(a), whatcompletesthe proof. •

The group J(w) is of utmost important when one consider time problem of
lifting of symmetriesfrom the baseto the bundle.J(w) describesthe freedoni

of choosing a <<phasefactor>> of the transformationand, in general,a symmetry
group after lifting to the bundle space will acquire a multiplier with

values in J(w). This phenomenonof appearingof projective representations

of groups is well known from quantum mechanics. The U( I) case is.

however, exceptionally simple. Indeed the centralizer of the homomony

group is in this case a/was’s U(l), independently of the connection. For a

non-Abelian gauge field the freedomof choosing a phasewill dependon the

gaugefield.

5.4. Killing vectorsof aconnection

The formula (5.3.1) tells us when a given automorphism of the bundle can

be consideredas a symmetryof w. It can be read as
5’KW = w, with s’ = T5’s.

Thus for a given w the importantgroup is the group of all automorphismsof
U which leave w invariant. Infinitesimal automorphismsare describedby ini’a-

nan! vector fields. A vector field X on the bundle is invariant if Xa = X for all

a cR or, infinitesimally, if

(5.4.1) EX,Z~]=0, oCR,

whereZ is the t’undamentahvector field generatedby element v of R = Lie (R).

An invariant vector field X will be called a Killing vector for w if

(5.4.2) L~w= 0

i.e.

(5.4.3) Xw(Y) — w([X, Y]) = 0.

Thecurvature2-form F~Dw is definedby

(5.4.4) F(Y,Z)= (Dw)(I’çZ)= Yw(Z)—Zw(Y)—w([Y,Z])+ [w(Y). w(Z)].

Combining (5.4.3) and (5.4.4) we find that if X. Y are two Killing rectors of w

then

(5.4.5) F(X, Y) = w([X, Y]) + [w(X), w(Y)].

This formula is similar in its content to (3.4.9) where we havegiven matrix

elementsof thecurvaturetensorof a metric betweenKilling vectors.

Every Killing vector of w can be decomposedinto its vertical and horizontal
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part X = X, + X,,, with both X andXh beingagain Killing vectors. We already

know that X spanthe Lie algebraof the centralizerof theholonomy groupof

w. It is instructive to understandthis property also algebraically. First of all

observethat a vertical invariantvector field x canbe also interpretedas a matter

field of type Ad i.e. as acrosssectionof theassociatedvectorbundleU x Ad(R)R.

Indeed, vertical vectors can be identified with vectorsin the Lie algebraand

invarianceof x meansthat x(pa) = Ad (a_t)~(p)becauseof theproperty (3.2.1)

of fundamentalfields. With this double understandingof x one caneasily find

that

(5.4.6) Lw=Dx.

Thus x is a Killing vectorfor w iff x is covariantlyconstant.Supposenow L~w =

= Dx= 0, Then, becauseof the identity

(5.4.7) D2x = [F, xl

we find that the valuesof any vertical Killing field must commutewith F what

is compatiblewith theProposition(5.3).

Let us considerhorizontal Killing vectors.Everyinvariant horizontal vector
field (X is horizontal iff w(X) ~O) is a horizontal lift of a vector field on the

basis.If ~ is a vector field on F let E beits horizontallift. Then~is a Killing vector

of cc iff

(5.4.8) i(~)F=0,

i.e.

(5.4.9) F(E, p) = 0 Vs~.

5.5. Example

It is instructive to discuss a simple example given by Henneaux[28] (2),

He considers a gauge potential described in Minkowski space by w~(x)=

= 60.v 131, where M ~ 0 is a constant matrix from the SO(3) algebra, and

argues that tralislations when lifted to the bundle must acquire phase factors

which lead to a nontrivial multiplier. Let us briefly commenton this example.

The holonomy group of cc~is U(1) and its centralizerin SO(3) is again LT(l).

Thus J(w) = U(l) and we iiiam’ have U(l) multiplier. To simplify further reason-

ing supposethe gaugegroup was U(h) instead of 50(3). SinceF
01(x) ~M ~ 0

and the gaugegroup is Abelian. it follows from the formula(5.4.5) that infinite-

(2) 1 am indebtedto Prof. A. Trautman for drawingmy attentionto this reference.
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sinial translationsalong the v 0 and x axis hind lift to liolu’onmmutiig Killing

vectorsX0 and N1. The fact that the gaugegroupis 50(3) and not U( I) does

not changethis conclusionsince a monient of reflection shows that cc(N0) and

w(X1) must commutealso in this case.

6. DIMENSIONAL REDUCTION OF EINSTEIN-YANG-MILLS SYSTEMS

6.1. Application of theReductionTheorem

We conic back to the problem of describingall Yang-Mills fields with a given

symnietry group S. As ili section (5.1) we assumethat S actsalready on the

bundle and that connectionsare strictly invariant i.e. time in (5.3.1) is put

on the left-hand side. Our discussionin Section (5.2) indicatesthat aU-invariant

connection cc may induce a connection in the bundle Q defined in (5.2.4). It

was shown in [24] that the situation is more complicated. w suppliesonly Z-

-part of a connection in Q and a N(i) I - part niust he supplied by S-invariant

metric on F. Thereforea natural object for dimensional reduction is not a Yang-

-Mills field but an Einstein-Yang-Mills system. Another justification to this

assertionis that the Yang-Mills Lagrangianfor a connectionw~.on I” involves

metric on F. and if the action is to be U-invariant then not on/i’ cci. 1)111

also must be C—invariant.

Now, let and be both 0-invariant. Accordingto the ReductionTheorem

given in Section (4.1) we can use a fixed biinvariant metric on the structure
group R to built an R -invariant metric on U. Since the ingredients~ was

built from were all S-invariant, it follows that is not only R - hut alsoR x S-

-invariant. Thus the problem of classifying all S-invariant Einstein-Yang-Mills

systemshasbeenreduced to theproblemof classifyingall R x S invariantmetrics

which induce a fixed biinvariant metric on R. And this latter problem can be

easilyhandledwith the methodswe alreadylearned.According to theReduction

Theoremwe have(observethat U/S x R = ill)

~

scalarfields

The g,~1and WQ parts are clear. Let us discussthe scaharfields. To know their

naturewemustdecomposethe Lie algebra0 of C = S x R. Let

S = J + K + L

be the decompositionof .5 as discussedin Section 3. 1 (with the difference that

H is now 3. 0 is now S, and.5 is now L)
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o = S + R = 3 + K + L + R.

Now, recallthat H = {(s, A(s)) : s Cl } andtherefore

H ={v+A’(v):uCJ},

whereA’ is the derivedLie algebrahomomorphism.It follows that

G=H+K+L+R

and one can easily checkthat this is a reductivedecomposition.Our scalarfield
determinesthus an Ad (11)-invariant scalar product on K + L + R. The scalar

product on K + L clearly comesfrom and the one on R from ~R’ It follows

that determinesscalarproduct (K. R) and (L, R) or, equivalently, linear

mapsK —* R and L —~ R where we haveidentified R with its dualusing oR.

6.2. Geometry of scalar fields

Let us take a closerlook into the geometryof scalar fields. Here again we
find a place where the ReductionTheoremfinds its natural application.First

of all, we know that the scalar fields describea G-invariant metric on H\G.
But now C =SxR and H={(s,A(s)) :s ci]. Let us see that now H\C isa
principal bundle oi’er I\S wit/i structure group R. The projection it :H\G -+

—‘~l\Sis defined by it : [(s,r)] -÷ [s], where s cS, r ER, and the brackets[
stand for H and I cosetsrespectively. Action of the structuregroupR is given

by [(s, r)]r’ [(s, rr’)]. Finally S acts on the bundle by bundle automorphisms

t[(s, r)] [sIC1, r)l wl1ich induce the canonical action of S on the baseI\S.

Our scalar field is a metric on the bundle which is, in particular, R-invariant.

Thus, we know, it determines:metric on the baseI\S, connection on I\S

with gaugegroupR, andR-invariantmetric on R. Let us describethis explicitly.

We use indices a’, ~ for K + L S/J, and indices i,f for R. Then decom-

posesinto

g
0 = + g~=

g~1= mb~, gQ = +haIs4~

where are the componentsof the Killing metric on R, 1i~ is the induced
(still S-invariant)metric on I \S, and - is the gaugefield on I \S with gauge

groupR. It is the field ~ which comesfrom the reduction of theoriginal Yang-

-Mills field we,,. It satisfiesthe constraintof Ad (11)-invariance

~oAd(s)=Ad(A(s))o~,
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or, infinitesimally,

~ A~’C~,

where the index a’ runs through 3. Since ~ intertwinesthe representationsof /

on K + C and on R (via A). and sincethe representationof I on K is trivial, it
follows that ç5(K) must commute with AU) i.e. ~(K) C 2 Lie (Z). Manton

used tha scalar field to describeHiggs fields of the Weinberg-Salammodel

[29]. In his exampleK is trivial.

6.3. Results

We end this sectionwith giving the result of the dimensionalreductionof the

scalar curvatureR~1with the Killing metric for R. For details see [30]. We have

RLT=RE+ ~“~

1ER +RR =

= R
41 + ~‘~M,.5’ (Hi ]H + L (/ia~)+ L (~).

wit Ii
RE — scalarcurvatureof F

— Yang-Mills Lagrangianfor (U. it, F. R)
RR scalarcurvatureof R endowedwith theKilling metric(constant.

see(3.6.d))

R~1 scaharcurvatureof themetricg~,,on 111

~

MMN(H) H — Yang-Mills Lagrangianfor (Q, it, M, IV(11) 11)

L(/ia~) — Lagrangianfor scalar fields from ~ (see the second,fourth
and fifth termsof (4.4.4)rephacingg~by/i>).

Theterm L (0) containingthe fields ~ is

L(ç5)=Kin(ct)+ V(Ø)+O(çb), where

Kin (0) = — 1/2 /m’O
1~D0’D~0~.

V(Ø) =— 41 /l~li~o~.(C’~0’+ ç0x’ — o~0~)~

x ~ + C~.0,A’,-Ck0~0~).

O~O~F”~(06f~-2I’~,),

where1, 7 run through K and i, I through L. Thus, when K is nontrivial we hiave

a iio,iniiiii,nal interactionterm for 0 : K —f Z.

REMARK. It should be stressed again that thedimensionalreductionof Einstein-
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-Yang-Mills systemby imposingsymmetry groupS is equivalentto thedimensio-

nal reductionof a metric with nonsimpie symmetry groupanddiagonal imbedd-

ing of theisotropygroup.

7. COMMENTS ON RELATED ROPICS

7.1. Einstein-Cartan theory and spinors

To discussspinors we must go beyond metric formalism and introducethe
vielbein bundle. Thereare subtledifferencesbetweendifferent approachesto this

problem.We chooseone which allows us to teatspinors even if space-timedoes
not admita spinor structure.

LetEbean n-dimensionalmanifold, let 77 = diag(+ 1, + 1 — 1,— 1,. .

be the standardflat-spacemetric, and let A : Spin (ii) —~SOft) the twofold spin
covering. Let (P, it, F, Spin (t)) be a principal bundleoverF with structuregroup

Spin (77). (Sucha bundle alwaysexists,for examplewe cantakethe trivial bundle
F x Spin (r)). Letp : Spin (r)—* End (F) be a faithfull representation of Spin (ri)

in (real or complex) vector space V. The associatedbundle P x V is called

the bundle of spinorsof type p. The grouphomomorphismA may be considered

as a (non-faithful) representationof Spin (77) in 1W’. We can thereforebuild the

associatedbundle P x ,,lR”. The dynamical variables of the Einstein-Cartan

theoryare
i) principal connectioncc in P

ii) one-form e : TE -* P x)R~on F with values in the bundle P x 5lR”.

We canalso addspinorialmatteras

iii) cross-sectionm,~iof thevectorbundleP x V of spinors.

How do we build a Lagrangianfor this theory?0 is a one-formon F with values

in the associatedbundle.The curvaturef2 = Dcc can be consideredas two-form
on F with valuesin P x Ad

50Ui) correspondingto the adjoint representationof

Spin (ii) on its Lie algebraspin (77) = soUi). The Lagrangian11 -form is thengiven

by

LE = e
0~m1A . . . A 0a,, —2 A &2a,, — a,,

a,, _2a,, —

where Zab = ~a 77cb , Of course LEC was written with respectto a local cross-
-section of P - 0 has now indices and fl also - but the Lagrangianis clearly

independentof a. This because� and r~tareinvariant tensorsof S0(77).

It is crucial that no catastrophy occurseven if det0~(x)= 0 at somepoint.

0 is calleda solderingfomi andsometiniesvielbein.In ourformulationvielbeinmay

be allowed to becomedegenerateandevenvanish.We cansayevenmore:0 must

becomedegenerateat least at one point if the topology of E doesnot allow for

a spinor structure.What is niore interestingis that no catastrophvoccursalso to
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1/n’ Dira>’ Lagrangian it’/ien i’ieihein dc’g<’ncratc’s or (‘IC// ‘ahhiv/n’.d. The Dirac La-

grangian is described as follows. We assumethat in 1 ‘ we have given not only

a representatIon p of Spin p ) hut that p is derived from a represelitation 01’ time

Clifford algebra H 71. If ‘~a are the endomorphismsof I representingthe bash

vectorsof IR”. then

anci

p(r) ~prr’ = ~ A(r)~’, r C Spin (77).

We alsoassumethat in 1’ we havegiven a bilinear (or sesquihinear.if I’ is complex)

scalarproduct invariantunderp (Spin (r7fl. Then
L ,= �

0a1 A - . - A 0a,, - A T~

D~ra~ a1 a,,

with

a a

y fl=(~,y “D~i(.

whereD ~ is the covariantderivative of ~ with respectto the PriIiCiPaI connection

u;. it is evidelit that 0 may becomedegeneratewithout doing any Isarm also to

this Lagrangian. I hope to discussthese problemselsewhere.Here let us consider

time probleniof spinor fields with symnietries.

7.2. S-invariant spirmors

Since spinors hive in a btlndhe associatedto P. their symmetriesmust be describ-

ed in ternms of vector fields on P alid not on F. Thus we nseetagain(seeSection

S the problem of lifting symnietries from the baseto the bulidle space. Here

however this probleni is easily solved if 0 is everywhereof the maximal rank.

Indeed, it is easy to see that then for even’ vector field A ‘n L there c’.vis’ic j

unique ini’ariant lift X of’ A’ to P such that L~(-)= 0. Now, a spinor field ~ calm

he alsoconsideredas an equivariantfunction on P with values in I

~(pr) = p(r ‘)~(p). r C Spin (77).

Thereforewe cancall A’ a symmetryof ~‘ if

L,~~ = 0.

whereA’ is determinedby L~0= 0. it~.X-= A’, andthe invarianceof A’. In general

however.when det (0) is allowed to vanish we can not avoid the lifting prohleimi

and we haveto assumethat action of the symmetry groupS on thebundleP b~

autornorphisnisis somehowgiveli. We can write an integral version of the last

forni ula
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sES.

Invariant spinorson F can then be describedin terms of spinor multiplets on
31 EIS. However, we can easily relax the last condition without loosing its

nice properties. Assume in V we have also a representationa’ of the groupS

which commutes with p (we havenot assumedthat p is irreducible). Then ~ is

calleda’-equivariantif

0(sp) = a’(s)Vt~p).

For example, in five-dimensionalKaluza-Khein theory S may be taken U(l),
and a’ = a’~,a characterof U(l) i.e. a’~(0)= exp(in 0). Thena’~-equivariantspinor

on F is a spinor onM carryingelectric chargene. (SeeRef. [49]).

7.3. Colorand Higgscharges

In a simple Kaluza-Klein theory on a principal bundle,and without scalar

fields, it is well known that geodesicsin the bundle projectonto the trajectories
in M which describeparticleswith a color chargeinteractingwith non-Abehian

Yang-Mills field via Lorentz-typeforce (seee.g. [311,[32]). Considernow a more

general casewhen C acts on F with orbits of type H \ C andscalarfields g,~.
Assumingmetric in F to be C-invariantwe know that the effective gaugegroup

is AT(H) H and g~(x)describeC-invariant metric in 11 \ C - the shapeof the

copy of H \ G at x. Let us also recall that the field g~splits into two kinds:

g,~>=(g~g,g~~),where (g..g) is a scaharproduct on K, and (gab) an Ad(H)-inva-
riant scalarproduct on L. Here K is the spaceof all Ad (11) singlets in G/H and

L is the Ad (11)-invariant complementof K in 0/H (seeSection4.1).The Chri-

stoffel symbols of the Levi-Civita connection havebeenalready calculatedso

that it is easy to write down geodesicequationsin F. A careful discussionis

howevernecessaryto analyzetheir projectionson 31. Let us give herethe results

(for details see [33], [34]). The projectedtrajectory describesaparticlewith two

charges:a color chargeq” and Higgs chargeAa. Both take valuesin associated

bundles; q in P x Ad K andA in P x Ad~L /H). The equations of motion are

D~ I 1
— = q~F~’,,x’~+ — qaqbD (g-g)+ — A0At~D,Jg~~

dt 2

Non-Abelian TypeI TypeII
Lorentz force Higgs force Higgs force

Dq -. -.
_—~ =Cqbq~+c~~AbAc

Type I Type II
clsargenonconservation chargenonconservation
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i) 3
=f’ ~A’ -a!).,

dr

It is iriterestlng that the Higgs charge A hasa geonmetrical interpretation of describ-

Ing the slope of the particle trajectory with respect to the principal bundle P

inibedded in F. Observe Imowever that the word ‘~charge‘‘ really means“charge

massratio’ here.
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